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Abstract

In this paper we prove a semilocal convergence theorem for an R-order four iteration free

from second derivative under conditions similar to those of the Newton-Kantorovich theorem

and give a priori error bound. Numerical comparisons are made to show the performance of

the presented method and its modifications.

1 Introduction

In recent years have been appeared many higher order methods [1-4] for solving

nonlinear equations. They can be used in problems, where a quick convergence is

required, such as stiff systems [3,4]. We consider the following fourth order iteration

[8,5]:

yn = xn − ΓnF (xn), xn+1 = yn − F ′(yn)−1F (yn), Γn = F ′(xn)−1, (1)

for solving nonlinear equation F (x) = 0. Here we assume that X and Y are Banach

spaces and F : Ω ⊆ X → Y is a nonlinear twice differentiable Frechet operator de-

fined on a convex nonempty domain Ω. Let us also assume that F ′(x0)−1 ∈ L (Y, X)
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exists for some x0 ∈ Ω, where L (Y, X) is the set of bounded linear operators from

Y into X. Moreover we suppose that

(c1) ‖Γ0‖ ≤ β,

(c2) ‖y0 − x0‖ = ‖Γ0F (x0)‖ ≤ η,

(c3) ‖F ′′(x)‖ ≤ M, x ∈ Ω.

In this paper, we smoothen the conditions imposed on operator F. Namely, we prove

a semilocal convergence theorem for (1) without assumption of Lipschitz continuity

of the second derivative and obtain error bounds by using a technique consisting of

a new system of recurrence relations [2,3].

2 Convergence study

We denote

a0 = Mβη, (2)

f(x) =
2(1− x)

2(1− x)2 − x2
, g(x) =

x3

8(1− x)2
(3)

and define a sequence

an+1 = f(an)2g(an)an, n = 0, 1, . . . (4)

Firstly, technical lemmas, the proofs of which are trivial, are provided [2,3].

Lemma 1. Let f and g be two real functions given by (3). Then

(i) They are increasing and f(x) > 1 for x ∈ (0, 1/2).

(ii) f(γx) < f(x) and g(γx) ≤ γ3g(x) for x ∈ (0, 1/2) and γ ∈ (0, 1).
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Lemma 2. Let 0 < a0 < 1/2. Then f2(a0)g(a0) < 1 and the sequence {an} is

decreasing.

Lemma 3. Let us suppose that the hypothesis of lemma 2 is satisfied and define

γ = a1/a0. Then

(i) γ = f(a0)2g(a0) ∈ (0, 1)

(ii) an ≤ γ4n
an−1 ≤ γ

4n−1
3 a0

(iii) f(an)g(an) < ∆γ4n
, ∆ = 1

f(a0) < 1.

Notice that

M‖Γ0‖ · ‖Γ0F (x0)‖ ≤ a0, ‖y0 − x0‖ ≤ η < Rη

and

‖x1 − x0‖ ≤
(

1 +
a0

2(1− a0)

)
‖y0 − x0‖

<

(
1 +

a0

2(1− a0)

)
1

1− γ∆
η = Rη,

where R =
(
1 + a0

2(1+a0)

)
1

1−γ∆ . This means that y0, x1 ∈ B(x0, Rη) = {x ∈ X|‖x−
x0‖ < Rη}. In these conditions we prove, for n ≥ 1, the following statements:

(In) ‖Γn‖ = ‖F ′(xn)−1‖ ≤ f(an−1)‖Γn−1‖,

(IIn) ‖ΓnF (xn)‖ ≤ f(an−1)g(an−1)‖Γn−1F (xn−1)‖,

(IIIn) M‖Γn‖ · ‖ΓnF (xn)‖ ≤ an,

(IVn) ‖xn+1 − xn‖ ≤
(
1 + an

2(1−an)

)
‖yn − xn‖,

(Vn) yn, xn+1 ∈ B(x0, Rη).
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Assuming (
1 +

a0

2(1− a0)

)
a0 < 1, x1 ∈ Ω

we have

‖I−Γ0F
′(x1)‖ ≤ ‖Γ0‖·‖F ′(x0)−F ′(x1)‖ ≤ M‖Γ0‖·‖x1−x0‖ ≤

(
1 +

a0

2(1− a0)

)
a0 < 1.

Then, by the Banach lemma, Γ1 is defined and

‖Γ1‖ ≤ ‖Γ0‖
1− ‖Γ0‖ · ‖F ′(x0)− F ′(x1)‖ ≤

1

1−
(
1 + a0

2(1−a0)

)
a0

‖Γ0‖ = f(a0)‖Γ0‖.

On the other hand, if xn, xn−1 ∈ Ω we obtain from Taylor’s formula

F (xn+1) =
F ′′(ηn)

2
(xn+1 − yn)2, ηn = αyn + (1− α)xn+1, α ∈ (0, 1). (5)

Therefore using

xn+1 − yn = −F ′(yn)−1F (yn)

and

F (yn) =
F ′′(ξn)

2
(yn − xn)2, ξn = θxn + (1− θ)yn, θ ∈ (0, 1)

we get

F (xn+1) =
F ′′(ηn)

8
(
F ′(yn)−1

)2 (
F ′′(ξn)

)2 (yn − xn)4. (6)

Analogously, we have

F ′(yn) = F ′(xn) + F ′′(ξ̄n)(yn − xn) = F ′(xn)
[
I + ΓnF ′′(ξ̄n)(yn − xn)

]
,

ξ̄n = wxn + (1− w)yn, w ∈ (0, 1).

Therefore, we obtain

‖F ′(yn)−1‖ ≤ ‖(I + ΓnF ′′(ξ̄n)(yn − xn))−1‖ · ‖Γn‖ ≤ 1
1− an

‖Γn‖. (7)
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Then, for n = 0, if y0 ∈ Ω, we have

‖F ′(y0)−1‖ ≤ 1
1− a0

‖Γ0‖,

‖Γ1F (x1)‖ ≤ ‖Γ1‖ · ‖F (x1)‖ ≤ f(a0)‖Γ0‖3 M3

8
‖y0 − x0‖4

< f(a0)g(a0)‖Γ0F (x0)‖

and (II1) is true. To prove (III1) and (IV1), notice that

M‖Γ1‖ · ‖Γ1F (x1)‖ ≤ Mf(a0)2g(a0)‖Γ0‖ · ‖Γ0F (x0)‖ = a1.

In addition, we easily deduce that

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖ ≤
(

f(a0)g(a0) + 1 +
a0

2(1− a0)

)
η

=
(

γ∆ + 1 +
a0

2(1− a0)

)
η <

(
1 +

a0

2(1− a0)

)
(1 + γ∆)η

<

(
1 +

a0

2(1− a0)

)
1

1− γ∆
η = Rη

and

‖x2 − x1‖ ≤
(

1 +
a1

2(1− a1)

)
‖Γ1F (x1)‖.

Then, we have

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖

≤
{(

1 +
a1

2(1− a1)

)
f(a0)g(a0) + 1 +

a0

2(1− a0)

}
η

≤
(

1 +
a0

2(1− a0)

)
(1 + ∆γ)η <

(
1 +

a0

2(1− a0)

)
1

1− γ∆
η = Rη.

Therefore, y1, x2 ∈ B(x0, Rη). Now following an inductive procedure and assuming

yn, xn+1 ∈ Ω and an

(
1 +

an

2(1− an)

)
< 1, n ∈ N (8)

the items (In)− (Vn) are proved. To establish the convergence of {xn} we only have

to prove that it is a Cauchy sequence and that the above assumptions (8) are true.
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We note that
(

1 +
an

2(1− an)

)
‖ΓnF (xn)‖ ≤

(
1 +

an

2(1− an)

)
f(an−1)g(an−1)‖Γn−1F (xn−1)‖

and hence
(

1 +
an

2(1− an)

)
‖ΓnF (xn)‖ ≤

(
1 +

a0

2(1− a0)

)
‖Γ0F (x0)‖

n−1∏

k=0

f(ak)g(ak)

by induction. As a consequence of Lemma 3 it follows that

n−1∏

k=0

f(ak)g(ak) ≤
n−1∏

k=0

γ4k
∆ = ∆nγ

4n−1
3 .

Since ∆ < 1 and γ < 1, we deduce that
∏n−1

k=0 f(ak)g(ak) converges to zero by letting

n →∞. We can now state the following result on convergence for (1).

Theorem 1. Let X, Y be Banach spaces and F : Ω ⊆ X → Y be a nonlinear

twice Frechet differentiable operator defined on a convex, nonempty domain Ω. Let

us assume that Γ0 ∈ L (Y, X) exists at some x0 ∈ Ω and (c1) − (c3) are satisfied.

Suppose that 0 < a0 < 1/2. Then, if B(x0, Rη) = {x ∈ X|‖x − x0‖ ≤ Rη} ⊆ Ω,

the sequence {xn} defined in (1) and starting at x0 has, at least, R-order four and

converges to a solution x∗ of the equation F (x) = 0. In that case, the solution x∗

and the iterates yn, xn belong to B(x0, Rη), and x∗ is the only solution of F (x) = 0

in B(x0, 2/Mβ −Rη)
⋂

Ω. Furthermore, we have following error estimate:

‖x∗ − xn‖ ≤
(

1 +
a0

2(1− a0)
γ

4n−1
3

)
γ

4n−1
3

∆n

1−∆γ4n η (9)

Proof. Let us now prove (8). Since 0 < a0 < 1/2, by lemma 2 {an} is decreasing

and the function

x

(
1 +

x

2(1− x)

)

is increasing, therefore we have

an

(
1 +

an

2(1− an)

)
< a0

(
1 +

a0

2(1− a0)

)
< 1.
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In addition, as yn, xn ∈ B(x0, Rη) for all n ∈ N , then yn, xn ∈ Ω, n ∈ N . Thus

(8) is true. Now we prove that {xn} is a Cauchy sequence. To do this, we consider

n,m ≥ 1 :

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ ‖xn+m−1 − xn+m−2‖+ . . . + ‖xn+1 − xn‖

≤
(

1 +
an

2(1− an)

)
η




n+m−2∏

j=0

f(aj)g(aj) + . . . +
n−1∏

j=0

f(aj)g(aj)




≤
(

1 +
a0

2(1− a0)
γ

4n−1−1
3

)
η

[
γ

4n+m−1−1
3 ∆n+m−1 + . . . + γ

4n−1
3 ∆n

]

=
(

1 +
a0

2(1− a0)
γ

4n−1
3

)
ηγ

4n−1
3 ∆n

[
γ

4n(4m−1−1)
3 ∆m−1 + . . .

+γ
4n(4−1)

3 ∆ + 1
]
.

Using the well known inequality (1 + x)k > 1 + kx, we have

‖xn+m − xn‖ ≤
(

1 +
a0

2(1− a0)
γ

4n−1
3

)
γ

4n−1
3 ∆n 1− γ4nm∆m

1− γ4n∆
η. (10)

Then {xn} is a Cauchy sequence.Now by letting m → ∞ in (10), we obtain (9).

From (9) it is evident that xn has R-order four at least. To prove that F (x∗) = 0,

notice that ‖ΓnF (xn)‖ → 0 as n → ∞. As ‖F (xn)‖ ≤ ‖F ′(xn)‖‖ΓnF (xn)‖ and

{‖F ′(xn)‖} is a bounded sequence, we deduce ‖F (xn)‖ → 0 and then F (x∗) = 0

by the continuity of F. To show the uniqueness, we suppose that there exists y∗ ∈
B(x0, 2/Mβ −Rη)

⋂
Ω another solution of F (x) = 0. Then

0 = F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).

Using the estimate

‖Γ0‖
∫ 1

0
‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖dt ≤ Mβ

∫ 1

0
‖x∗ + t(y∗ − x∗)− x0‖dt ≤

≤ Mβ

∫ 1

0
((1− t)‖x∗ − x0‖+ t‖y∗ − x0‖)dt <

Mβ

2
(Rη +

2
Mβ

−Rη) = 1,

we can see that the operator
∫ 1
0 F ′(x∗+t(y∗−x∗))dt has an inverse and consequently,

y∗ = x∗.
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one evaluation of F ′. The simplest cases are (13) with a = ±1. In this case the

iteration leads to

yn = xn − ΓnF (xn),

xn+1 = yn − zn − xn

F (zn)− F (xn)
F (yn), zn = 2yn − xn. (14)

The iteration (14) requires evaluation of F at three points xn, yn and zn and eval-

uation of F ′(xn) at every iteration step. As comparison, we consider the iteration

proposed by Ostrowski and Traub [4]

yn = xn − ΓnF (xn),

xn+1 = yn − yn − xn

2F (yn)− F (xn)
F (yn) (15)

which has R-order four convergence, but only need to calculate the derivative F ′(xn).

It is easy to verify that

zn − xn

F (zn)− F (xn)
= F ′(yn)−1 + O((yn − xn)2)

yn − xn

2F (yn)− F (xn)
= F ′(yn)−1 + O((yn − xn)2)

under the Lipschitz continuity assumption of second derivative F ′′(x). Thus the

iterations (13), as well as (14), have the same order of convergence as (15).

4 Numerical experiments and comparison

In this section we apply our methods to solve some nonlinear equations and com-

pare the performance of our methods with other methods, in order to check their

effectiveness. For comparison we present the following methods [7]:

xn+1 = xn +
1

f ′(xn)

[
f(xn)2

f(yn)− f(xn)
− f(yn)2

f(xn)

]
(16)

and [5]

xn+1 = yn − f(yn)
f ′(xn)

. (17)
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First, we consider the following scalar equations:

Example 1: sin2x− x2 + 1 = 0

Example 2: x3 + 4x2 − 10 = 0

Example 3: ln(x) = 0

The different iteration methods are used for the examples 1-3 with stopping cri-

terion |f(xn)| ≤ ε = 10−15.

Table1. Comparison of the iteration number of various methods.
Examples x0 4th order methods 3rd order 2nd order

(1) (14) (15) (4) [7] (4) [6] NM

1 1 4 3 3 4 5 6

2 2 3 3 3 4 4 5

3 1.5 3 3 3 3 3 5

Next we consider following systems of equations.

Example 4:

F (x, y) =
(

x2 − y + 1
x− cos(π

2 y)

)
= 0

Example 5:

F (x, y) =
(

x3 − 3xy − 1
3x2y − y3

)
= 0

Example 6:

F (x, y, z) =

( cosy−sinx

zx− 1
y

ex − z2

)
= 0

Table2. Comparison of the iteration number of various methods.
Examples x0 (1) (14) (15) (4) [6]

4 (-0.1,1.1) 3 4 4 3

5 (10,10) 6 6 7 8

6 (1,0.5,1.5) 3 6 7 4
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In this work, we consider two step Newton-like method and its modifications. We

proved Newton-Kantorovich type convergence theorem using recurrent relations to

show that it has a R-order four convergence and obtained an error estimate. The

proposed method and its modifications are compared to previously known higher

order convergence methods to show that they have an equivalent performance.
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